Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An efficient iterative method for dynamical Ginzburg-Landau equations (2207.01425v1)

Published 4 Jul 2022 in math.NA and cs.NA

Abstract: In this paper, we propose a new finite element approach to simulate the time-dependent Ginzburg-Landau equations under the temporal gauge, and design an efficient preconditioner for the Newton iteration of the resulting discrete system. The new approach solves the magnetic potential in H(curl) space by the lowest order of the second kind Nedelec element. This approach offers a simple way to deal with the boundary condition, and leads to a stable and reliable performance when dealing with the superconductor with reentrant corners. The comparison in numerical simulations verifies the efficiency of the proposed preconditioner, which can significantly speed up the simulation in large-scale computations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.