Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Sub-Cluster-Aware Network for Few-Shot Skin Disease Classification (2207.01072v2)

Published 3 Jul 2022 in cs.CV

Abstract: This paper addresses the problem of few-shot skin disease classification by introducing a novel approach called the Sub-Cluster-Aware Network (SCAN) that enhances accuracy in diagnosing rare skin diseases. The key insight motivating the design of SCAN is the observation that skin disease images within a class often exhibit multiple sub-clusters, characterized by distinct variations in appearance. To improve the performance of few-shot learning, we focus on learning a high-quality feature encoder that captures the unique sub-clustered representations within each disease class, enabling better characterization of feature distributions. Specifically, SCAN follows a dual-branch framework, where the first branch learns class-wise features to distinguish different skin diseases, and the second branch aims to learn features which can effectively partition each class into several groups so as to preserve the sub-clustered structure within each class. To achieve the objective of the second branch, we present a cluster loss to learn image similarities via unsupervised clustering. To ensure that the samples in each sub-cluster are from the same class, we further design a purity loss to refine the unsupervised clustering results. We evaluate the proposed approach on two public datasets for few-shot skin disease classification. The experimental results validate that our framework outperforms the state-of-the-art methods by around 2% to 5% in terms of sensitivity, specificity, accuracy, and F1-score on the SD-198 and Derm7pt datasets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. L. Yu, S. Wang, X. Li, C.-W. Fu, and P.-A. Heng, “Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2019.
  2. X. Li, Q. Dou, H. Chen, C.-W. Fu, X. Qi, D. L. Belavỳ, G. Armbrecht, D. Felsenberg, G. Zheng, and P.-A. Heng, “3d multi-scale fcn with random modality voxel dropout learning for intervertebral disc localization and segmentation from multi-modality mr images,” Medical Image Analysis, vol. 45, pp. 41–54, 2018.
  3. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net: learning dense volumetric segmentation from sparse annotation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2016.
  4. X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P.-A. Heng, “H-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumes,” IEEE Transactions on Medical Imaging, vol. 37, no. 12, pp. 2663–2674, 2018.
  5. F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein, “nnu-net: a self-configuring method for deep learning-based biomedical image segmentation,” Nature Methods, vol. 18, no. 2, pp. 203–211, 2021.
  6. X. Li, L. Yu, H. Chen, C.-W. Fu, L. Xing, and P.-A. Heng, “Transformation-consistent self-ensembling model for semisupervised medical image segmentation,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 2, pp. 523–534, 2020.
  7. X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  8. J. Sun, S. Lapuschkin, W. Samek, Y. Zhao, N.-M. Cheung, and A. Binder, “Explanation-guided training for cross-domain few-shot classification,” in International Conference on Pattern Recognition (ICPR), 2021.
  9. R. Feng, X. Liu, J. Chen, D. Z. Chen, H. Gao, and J. Wu, “A deep learning approach for colonoscopy pathology wsi analysis: accurate segmentation and classification,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 10, pp. 3700–3708, 2020.
  10. J. Chen, H. Ying, X. Liu, J. Gu, R. Feng, T. Chen, H. Gao, and J. Wu, “A transfer learning based super-resolution microscopy for biopsy slice images: the joint methods perspective,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 18, no. 1, pp. 103–113, 2020.
  11. X. Li, X. Hu, L. Yu, L. Zhu, C.-W. Fu, and P.-A. Heng, “Canet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading,” IEEE Transactions on Medical Imaging, vol. 39, no. 5, pp. 1483–1493, 2019.
  12. B. H. Y. Chung, J. F. T. Chau, and G. K.-S. Wong, “Rare versus common diseases: a false dichotomy in precision medicine,” NPJ Genomic Medicine, vol. 6, no. 1, pp. 1–5, 2021.
  13. X. Sun, J. Yang, M. Sun, and K. Wang, “A benchmark for automatic visual classification of clinical skin disease images,” in European Conference on Computer Vision (ECCV), 2016.
  14. V. Prabhu, A. Kannan, M. Ravuri, M. Chaplain, D. Sontag, and X. Amatriain, “Few-shot learning for dermatological disease diagnosis,” in Machine Learning for Healthcare Conference (MLHC), 2019.
  15. X. Li, L. Yu, Y. Jin, C.-W. Fu, L. Xing, and P.-A. Heng, “Difficulty-aware meta-learning for rare disease diagnosis,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020.
  16. K. Mahajan, M. Sharma, and L. Vig, “Meta-dermdiagnosis: few-shot skin disease identification using meta-learning,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020.
  17. D. Zhang, M. Jin, and P. Cao, “St-metadiagnosis: Meta learning with spatial transform for rare skin disease diagnosis,” in IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2020.
  18. W. Zhu, H. Liao, W. Li, W. Li, and J. Luo, “Alleviating the incompatibility between cross entropy loss and episode training for few-shot skin disease classification,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020.
  19. W. Zhu, W. Li, H. Liao, and J. Luo, “Temperature network for few-shot learning with distribution-aware large-margin metric,” Pattern Recognition, vol. 112, p. 107797, 2021.
  20. R. Singh, V. Bharti, V. Purohit, A. Kumar, A. K. Singh, and S. K. Singh, “Metamed: Few-shot medical image classification using gradient-based meta-learning,” Pattern Recognition, p. 108111, 2021.
  21. C. Zhou, M. Sun, L. Chen, A. Cai, and J. Fang, “Few-shot learning framework based on adaptive subspace for skin disease classification,” in 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).   IEEE, 2022, pp. 2231–2237.
  22. Y. Guo, N. C. Codella, L. Karlinsky, J. V. Codella, J. R. Smith, K. Saenko, T. Rosing, and R. Feris, “A broader study of cross-domain few-shot learning,” in European Conference on Computer Vision (ECCV), 2020, pp. 124–141.
  23. D. Chen, Y. Chen, Y. Li, F. Mao, Y. He, and H. Xue, “Self-supervised learning for few-shot image classification,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.
  24. C. Medina, A. Devos, and M. Grossglauser, “Self-supervised prototypical transfer learning for few-shot classification,” Arxiv, 2020.
  25. C. P. Phoo and B. Hariharan, “Self-training for few-shot transfer across extreme task differences,” Arxiv, 2020.
  26. Z. Dai, J. Yi, L. Yan, Q. Xu, L. Hu, Q. Zhang, J. Li, and G. Wang, “Pfemed: Few-shot medical image classification using prior guided feature enhancement,” Pattern Recognition, vol. 134, p. 109108, 2023.
  27. J. Xiao, H. Xu, D. Fang, C. Cheng, and H. Gao, “Boosting and rectifying few-shot learning prototype network for skin lesion classification based on the internet of medical things,” Wireless Networks, vol. 29, no. 4, pp. 1507–1521, 2023.
  28. C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in International Conference on Machine Learning (ICML), 2017.
  29. J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-shot learning,” Arxiv, 2017.
  30. V. Anand, S. Gupta, and D. Koundal, “Skin disease diagnosis: challenges and opportunities,” in Second Doctoral Symposium on Computational Intelligence, 2022, pp. 449–459.
  31. J. Kawahara, S. Daneshvar, G. Argenziano, and G. Hamarneh, “Seven-point checklist and skin lesion classification using multitask multimodal neural nets,” IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 2, pp. 538–546, 2018.
  32. A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” Arxiv, 2018.
  33. O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks for one shot learning,” Advances in Neural Information Processing Systems, vol. 29, pp. 3630–3638, 2016.
  34. X. Li, L. Yu, C.-W. Fu, M. Fang, and P.-A. Heng, “Revisiting metric learning for few-shot image classification,” Neurocomputing, vol. 406, pp. 49–58, 2020.
  35. Y. Liu, L. Zhu, X. Wang, M. Yamada, and Y. Yang, “Bilaterally normalized scale-consistent sinkhorn distance for few-shot image classification,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  36. N. Lai, M. Kan, C. Han, X. Song, and S. Shan, “Learning to learn adaptive classifier–predictor for few-shot learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 8, pp. 3458–3470, 2020.
  37. S. An, S. Kim, P. Chikontwe, and S. H. Park, “Dual attention relation network with fine-tuning for few-shot eeg motor imagery classification,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  38. Y. Zhang, S. Huang, X. Peng, and D. Yang, “Semi-identical twins variational autoencoder for few-shot learning,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  39. W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang, “A closer look at few-shot classification,” Arxiv, 2019.
  40. G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto, “A baseline for few-shot image classification,” Arxiv, 2019.
  41. Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola, “Rethinking few-shot image classification: a good embedding is all you need?” in European Conference on Computer Vision (ECCV), 2020.
  42. Z. Wu, A. A. Efros, and S. X. Yu, “Improving generalization via scalable neighborhood component analysis,” in European Conference on Computer Vision (ECCV), 2018.
  43. P. Mangla, N. Kumari, A. Sinha, M. Singh, B. Krishnamurthy, and V. N. Balasubramanian, “Charting the right manifold: Manifold mixup for few-shot learning,” in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2020.
  44. B. Liu, Y. Cao, Y. Lin, Q. Li, Z. Zhang, M. Long, and H. Hu, “Negative margin matters: Understanding margin in few-shot classification,” in European Conference on Computer Vision (ECCV), 2020.
  45. S. Yang, L. Liu, and M. Xu, “Free lunch for few-shot learning: Distribution calibration,” Arxiv, 2021.
  46. Y. Hu, V. Gripon, and S. Pateux, “Leveraging the feature distribution in transfer-based few-shot learning,” in International Conference on Artificial Neural Networks (ICANN), 2021.
  47. Y. Hu, S. Pateux, and V. Gripon, “Squeezing backbone feature distributions to the max for efficient few-shot learning,” Algorithms, vol. 15, no. 5, p. 147, 2022.
  48. Y. Bendou, Y. Hu, R. Lafargue, G. Lioi, B. Pasdeloup, S. Pateux, and V. Gripon, “Easy—ensemble augmented-shot-y-shaped learning: State-of-the-art few-shot classification with simple components,” Journal of Imaging, vol. 8, no. 7, p. 179, 2022.
  49. X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. Hauptmann, “A comprehensive survey of scene graphs: Generation and application,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 1–26, 2021.
  50. L. Zhang, X. Chang, J. Liu, M. Luo, Z. Li, L. Yao, and A. Hauptmann, “Tn-zstad: Transferable network for zero-shot temporal activity detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 3, pp. 3848–3861, 2022.
  51. M. Li, P.-Y. Huang, X. Chang, J. Hu, Y. Yang, and A. Hauptmann, “Video pivoting unsupervised multi-modal machine translation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 3, pp. 3918–3932, 2022.
  52. C. Yan, X. Chang, Z. Li, W. Guan, Z. Ge, L. Zhu, and Q. Zheng, “Zeronas: Differentiable generative adversarial networks search for zero-shot learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 9733–9740, 2021.
  53. Y. Wang, W.-L. Chao, K. Q. Weinberger, and L. van der Maaten, “Simpleshot: Revisiting nearest-neighbor classification for few-shot learning,” Arxiv, 2019.
  54. T. Cohen and M. Welling, “Group equivariant convolutional networks,” in International Conference on Machine Learning (ICML), 2016.
  55. S. Zagoruyko and N. Komodakis, “Wide residual networks,” Arxiv, 2016.
  56. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  57. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of Machine Learning Research, vol. 9, no. 11, 2008.
  58. S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers, “Fisher discriminant analysis with kernels,” in IEEE Signal Processing Society Workshop, 1999.
Citations (4)

Summary

We haven't generated a summary for this paper yet.