Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a generalization of Jones polynomial and its categorification for Legendrian Knots (2207.00777v1)

Published 2 Jul 2022 in math.GT and math.SG

Abstract: In this article, we explore a polynomial invariant for Legendrian knots which is a natural extension of Jones polynomial for (topological) knots. To this end, a new type of skein relation is introduced for the front projections of Legendrian knots. Further, we give a categorification of the polynomial invariant for Legendrian knots which is a natural extension of Khovanov homology for knots. The Thurston-Bennequin invariant of Legendrian knot appears naturally in the construction of the homology as the grade-shift. The constructions of the polynomial invariant and its categorification are natural in the sense that if we treat Legendrian knots as only knots (that is, we forget the geometry on the knots), then we recover the Jones polynomial and Khovanov homology respectively. In the end, we discuss strengths and limitations of these invariants.

Summary

We haven't generated a summary for this paper yet.