Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scheduling Planting Time Through Developing an Optimization Model and Analysis of Time Series Growing Degree Units (2207.00745v1)

Published 2 Jul 2022 in cs.LG

Abstract: Producing higher-quality crops within shortened breeding cycles ensures global food availability and security, but this improvement intensifies logistical and productivity challenges for seed industries in the year-round breeding process due to the storage limitations. In the 2021 Syngenta crop challenge in analytics, Syngenta raised the problem to design an optimization model for the planting time scheduling in the 2020 year-round breeding process so that there is a consistent harvest quantity each week. They released a dataset that contained 2569 seed populations with their planting windows, required growing degree units for harvesting, and their harvest quantities at two sites. To address this challenge, we developed a new framework that consists of a weather time series model and an optimization model to schedule the planting time. A deep recurrent neural network was designed to predict the weather into the future, and a Gaussian process model on top of the time-series model was developed to model the uncertainty of forecasted weather. The proposed optimization models also scheduled the seed population's planting time at the fewest number of weeks with a more consistent weekly harvest quantity. Using the proposed optimization models can decrease the required capacity by 69% at site 0 and up to 51% at site 1 compared to the original planting time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.