Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-informed machine learning for Structural Health Monitoring (2206.15303v1)

Published 30 Jun 2022 in cs.LG

Abstract: The use of machine learning in Structural Health Monitoring is becoming more common, as many of the inherent tasks (such as regression and classification) in developing condition-based assessment fall naturally into its remit. This chapter introduces the concept of physics-informed machine learning, where one adapts ML algorithms to account for the physical insight an engineer will often have of the structure they are attempting to model or assess. The chapter will demonstrate how grey-box models, that combine simple physics-based models with data-driven ones, can improve predictive capability in an SHM setting. A particular strength of the approach demonstrated here is the capacity of the models to generalise, with enhanced predictive capability in different regimes. This is a key issue when life-time assessment is a requirement, or when monitoring data do not span the operational conditions a structure will undergo. The chapter will provide an overview of physics-informed ML, introducing a number of new approaches for grey-box modelling in a Bayesian setting. The main ML tool discussed will be Gaussian process regression, we will demonstrate how physical assumptions/models can be incorporated through constraints, through the mean function and kernel design, and finally in a state-space setting. A range of SHM applications will be demonstrated, from loads monitoring tasks for off-shore and aerospace structures, through to performance monitoring for long-span bridges.

Citations (28)

Summary

We haven't generated a summary for this paper yet.