Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-SuperFlow: Self-supervised Scene Flow Prediction in Stereo Sequences (2206.15296v1)

Published 30 Jun 2022 in cs.CV

Abstract: In recent years, deep neural networks showed their exceeding capabilities in addressing many computer vision tasks including scene flow prediction. However, most of the advances are dependent on the availability of a vast amount of dense per pixel ground truth annotations, which are very difficult to obtain for real life scenarios. Therefore, synthetic data is often relied upon for supervision, resulting in a representation gap between the training and test data. Even though a great quantity of unlabeled real world data is available, there is a huge lack in self-supervised methods for scene flow prediction. Hence, we explore the extension of a self-supervised loss based on the Census transform and occlusion-aware bidirectional displacements for the problem of scene flow prediction. Regarding the KITTI scene flow benchmark, our method outperforms the corresponding supervised pre-training of the same network and shows improved generalization capabilities while achieving much faster convergence.

Citations (1)

Summary

We haven't generated a summary for this paper yet.