Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the local-global principle for isogenies of abelian surfaces (2206.15240v2)

Published 30 Jun 2022 in math.NT

Abstract: Let $\ell$ be a prime number. We classify the subgroups $G$ of $\operatorname{Sp}4(\mathbb{F}\ell)$ and $\operatorname{GSp}4(\mathbb{F}\ell)$ that act irreducibly on $\mathbb{F}\ell4$, but such that every element of $G$ fixes an $\mathbb{F}\ell$-vector subspace of dimension 1. We use this classification to prove that the local-global principle for isogenies of degree $\ell$ between abelian surfaces over number fields holds in many cases -- in particular, whenever the abelian surface has non-trivial endomorphisms and $\ell$ is large enough with respect to the field of definition. Finally, we prove that there exist arbitrarily large primes $\ell$ for which some abelian surface $A/\mathbb{Q}$ fails the local-global principle for isogenies of degree $\ell$.

Summary

We haven't generated a summary for this paper yet.