Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Evaluation of Three-Stage Voice Conversion Framework for Noisy and Reverberant Conditions (2206.15155v1)

Published 30 Jun 2022 in cs.SD and eess.AS

Abstract: This paper presents a new voice conversion (VC) framework capable of dealing with both additive noise and reverberation, and its performance evaluation. There have been studied some VC researches focusing on real-world circumstances where speech data are interfered with background noise and reverberation. To deal with more practical conditions where no clean target dataset is available, one possible approach is zero-shot VC, but its performance tends to degrade compared with VC using sufficient amount of target speech data. To leverage large amount of noisy-reverberant target speech data, we propose a three-stage VC framework based on denoising process using a pretrained denoising model, dereverberation process using a dereverberation model, and VC process using a nonparallel VC model based on a variational autoencoder. The experimental results show that 1) noise and reverberation additively cause significant VC performance degradation, 2) the proposed method alleviates the adverse effects caused by both noise and reverberation, and significantly outperforms the baseline directly trained on the noisy-reverberant speech data, and 3) the potential degradation introduced by the denoising and dereverberation still causes noticeable adverse effects on VC performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.