Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Generative Adversarial Network for Stress Detection Using Partially Labeled Physiological Data (2206.14976v2)

Published 30 Jun 2022 in cs.LG, cs.AI, and eess.SP

Abstract: Physiological measurements involves observing variables that attribute to the normative functioning of human systems and subsystems directly or indirectly. The measurements can be used to detect affective states of a person with aims such as improving human-computer interactions. There are several methods of collecting physiological data, but wearable sensors are a common, non-invasive tool for accurate readings. However, valuable information is hard to extract from the raw physiological data, especially for affective state detection. Machine Learning techniques are used to detect the affective state of a person through labeled physiological data. A clear problem with using labeled data is creating accurate labels. An expert is needed to analyze a form of recording of participants and mark sections with different states such as stress and calm. While expensive, this method delivers a complete dataset with labeled data that can be used in any number of supervised algorithms. An interesting question arises from the expensive labeling: how can we reduce the cost while maintaining high accuracy? Semi-Supervised learning (SSL) is a potential solution to this problem. These algorithms allow for machine learning models to be trained with only a small subset of labeled data (unlike unsupervised which use no labels). They provide a way of avoiding expensive labeling. This paper compares a fully supervised algorithm to a SSL on the public WESAD (Wearable Stress and Affect Detection) Dataset for stress detection. This paper shows that Semi-Supervised algorithms are a viable method for inexpensive affective state detection systems with accurate results.

Citations (7)

Summary

We haven't generated a summary for this paper yet.