Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Wrapper: Differentiable Wrapping Operator for User Interest Selection in CTR Prediction (2206.14647v1)

Published 28 Jun 2022 in cs.IR and cs.AI

Abstract: Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in the recommender systems. Recently, some deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success. In these work, the attention mechanism is used to select the user interested items in historical behaviors, improving the performance of the CTR predictor. Normally, these attentive modules can be jointly trained with the base predictor by using gradient descents. In this paper, we regard user interest modeling as a feature selection problem, which we call user interest selection. For such a problem, we propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper. More specifically, we use a differentiable module as our wrapping operator and then recast its learning problem as a continuous bilevel optimization. Moreover, we use a meta-learning algorithm to solve the optimization and theoretically prove its convergence. Meanwhile, we also provide theoretical analysis to show that our proposed method 1) efficiencies the wrapper-based feature selection, and 2) achieves better resistance to overfitting. Finally, extensive experiments on three public datasets manifest the superiority of our method in boosting the performance of CTR prediction.

Citations (6)

Summary

We haven't generated a summary for this paper yet.