Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MACSA: A Multimodal Aspect-Category Sentiment Analysis Dataset with Multimodal Fine-grained Aligned Annotations (2206.13969v1)

Published 28 Jun 2022 in cs.CL

Abstract: Multimodal fine-grained sentiment analysis has recently attracted increasing attention due to its broad applications. However, the existing multimodal fine-grained sentiment datasets most focus on annotating the fine-grained elements in text but ignore those in images, which leads to the fine-grained elements in visual content not receiving the full attention they deserve. In this paper, we propose a new dataset, the Multimodal Aspect-Category Sentiment Analysis (MACSA) dataset, which contains more than 21K text-image pairs. The dataset provides fine-grained annotations for both textual and visual content and firstly uses the aspect category as the pivot to align the fine-grained elements between the two modalities. Based on our dataset, we propose the Multimodal ACSA task and a multimodal graph-based aligned model (MGAM), which adopts a fine-grained cross-modal fusion method. Experimental results show that our method can facilitate the baseline comparison for future research on this corpus. We will make the dataset and code publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hao Yang (328 papers)
  2. Yanyan Zhao (39 papers)
  3. Jianwei Liu (20 papers)
  4. Yang Wu (175 papers)
  5. Bing Qin (186 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.