Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Get Your Memory Right: The Crispy Resource Allocation Assistant for Large-Scale Data Processing (2206.13852v2)

Published 28 Jun 2022 in cs.DC

Abstract: Distributed dataflow systems like Apache Spark and Apache Hadoop enable data-parallel processing of large datasets on clusters. Yet, selecting appropriate computational resources for dataflow jobs -- that neither lead to bottlenecks nor to low resource utilization -- is often challenging, even for expert users such as data engineers. Further, existing automated approaches to resource selection rely on the assumption that a job is recurring to learn from previous runs or to warrant the cost of full test runs to learn from. However, this assumption often does not hold since many jobs are too unique. Therefore, we present Crispy, a method for optimizing data processing cluster configurations based on job profiling runs with small samples of the dataset on just a single machine. Crispy attempts to extrapolate the memory usage for the full dataset to then choose a cluster configuration with enough total memory. In our evaluation on a dataset with 1031 Spark and Hadoop jobs, we see a reduction of job execution costs by 56% compared to the baseline, while on average spending less than ten minutes on profiling runs per job on a consumer-grade laptop.

Citations (6)

Summary

We haven't generated a summary for this paper yet.