Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Arbitrary Order Beneficial Feature Interactions for Recommender Systems (2206.13764v1)

Published 28 Jun 2022 in cs.IR and cs.LG

Abstract: Detecting beneficial feature interactions is essential in recommender systems, and existing approaches achieve this by examining all the possible feature interactions. However, the cost of examining all the possible higher-order feature interactions is prohibitive (exponentially growing with the order increasing). Hence existing approaches only detect limited order (e.g., combinations of up to four features) beneficial feature interactions, which may miss beneficial feature interactions with orders higher than the limitation. In this paper, we propose a hypergraph neural network based model named HIRS. HIRS is the first work that directly generates beneficial feature interactions of arbitrary orders and makes recommendation predictions accordingly. The number of generated feature interactions can be specified to be much smaller than the number of all the possible interactions and hence, our model admits a much lower running time. To achieve an effective algorithm, we exploit three properties of beneficial feature interactions, and propose deep-infomax-based methods to guide the interaction generation. Our experimental results show that HIRS outperforms state-of-the-art algorithms by up to 5% in terms of recommendation accuracy.

Citations (21)

Summary

We haven't generated a summary for this paper yet.