Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Impossibility of Decomposing Binary Matroids (2206.12896v2)

Published 26 Jun 2022 in cs.DS and math.CO

Abstract: We show that there exist $k$-colorable matroids that are not $(b,c)$-decomposable when $b$ and $c$ are constants. A matroid is $(b,c)$-decomposable, if its ground set of elements can be partitioned into sets $X_1, X_2, \ldots, X_l$ with the following two properties. Each set $X_i$ has size at most $ck$. Moreover, for all sets $Y$ such that $|Y \cap X_i| \leq 1$ it is the case that $Y$ is $b$-colorable. A $(b,c)$-decomposition is a strict generalization of a partition decomposition and, thus, our result refutes a conjecture from arXiv:1911.10485v2 .

Citations (4)

Summary

We haven't generated a summary for this paper yet.