Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Augmentation for Dementia Detection in Spoken Language (2206.12879v2)

Published 26 Jun 2022 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: Dementia is a growing problem as our society ages, and detection methods are often invasive and expensive. Recent deep-learning techniques can offer a faster diagnosis and have shown promising results. However, they require large amounts of labelled data which is not easily available for the task of dementia detection. One effective solution to sparse data problems is data augmentation, though the exact methods need to be selected carefully. To date, there has been no empirical study of data augmentation on Alzheimer's disease (AD) datasets for NLP and speech processing. In this work, we investigate data augmentation techniques for the task of AD detection and perform an empirical evaluation of the different approaches on two kinds of models for both the text and audio domains. We use a transformer-based model for both domains, and SVM and Random Forest models for the text and audio domains, respectively. We generate additional samples using traditional as well as deep learning based methods and show that data augmentation improves performance for both the text- and audio-based models and that such results are comparable to state-of-the-art results on the popular ADReSS set, with carefully crafted architectures and features.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Anna Hlédiková (1 paper)
  2. Dominika Woszczyk (7 papers)
  3. Alican Akman (7 papers)
  4. Soteris Demetriou (17 papers)
  5. Björn Schuller (83 papers)
Citations (12)