Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Transformation Invariance and Equivariance for Self-supervised Sound Localisation (2206.12772v2)

Published 26 Jun 2022 in cs.CV, cs.MM, cs.SD, and eess.AS

Abstract: We present a simple yet effective self-supervised framework for audio-visual representation learning, to localize the sound source in videos. To understand what enables to learn useful representations, we systematically investigate the effects of data augmentations, and reveal that (1) composition of data augmentations plays a critical role, i.e. explicitly encouraging the audio-visual representations to be invariant to various transformations~({\em transformation invariance}); (2) enforcing geometric consistency substantially improves the quality of learned representations, i.e. the detected sound source should follow the same transformation applied on input video frames~({\em transformation equivariance}). Extensive experiments demonstrate that our model significantly outperforms previous methods on two sound localization benchmarks, namely, Flickr-SoundNet and VGG-Sound. Additionally, we also evaluate audio retrieval and cross-modal retrieval tasks. In both cases, our self-supervised models demonstrate superior retrieval performances, even competitive with the supervised approach in audio retrieval. This reveals the proposed framework learns strong multi-modal representations that are beneficial to sound localisation and generalization to further applications. \textit{All codes will be available}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jinxiang Liu (9 papers)
  2. Chen Ju (26 papers)
  3. Weidi Xie (132 papers)
  4. Ya Zhang (222 papers)
Citations (32)