Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Bandwagon Effect: Not Just Another Bias (2206.12701v2)

Published 25 Jun 2022 in cs.IR and stat.ML

Abstract: Optimizing recommender systems based on user interaction data is mainly seen as a problem of dealing with selection bias, where most existing work assumes that interactions from different users are independent. However, it has been shown that in reality user feedback is often influenced by earlier interactions of other users, e.g. via average ratings, number of views or sales per item, etc. This phenomenon is known as the bandwagon effect. In contrast with previous literature, we argue that the bandwagon effect should not be seen as a problem of statistical bias. In fact, we prove that this effect leaves both individual interactions and their sample mean unbiased. Nevertheless, we show that it can make estimators inconsistent, introducing a distinct set of problems for convergence in relevance estimation. Our theoretical analysis investigates the conditions under which the bandwagon effect poses a consistency problem and explores several approaches for mitigating these issues. This work aims to show that the bandwagon effect poses an underinvestigated open problem that is fundamentally distinct from the well-studied selection bias in recommendation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.