Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Diverse Vocal Bursts with StyleGAN2 and MEL-Spectrograms (2206.12563v1)

Published 25 Jun 2022 in cs.SD, cs.LG, and eess.AS

Abstract: We describe our approach for the generative emotional vocal burst task (ExVo Generate) of the ICML Expressive Vocalizations Competition. We train a conditional StyleGAN2 architecture on mel-spectrograms of preprocessed versions of the audio samples. The mel-spectrograms generated by the model are then inverted back to the audio domain. As a result, our generated samples substantially improve upon the baseline provided by the competition from a qualitative and quantitative perspective for all emotions. More precisely, even for our worst-performing emotion (awe), we obtain an FAD of 1.76 compared to the baseline of 4.81 (as a reference, the FAD between the train/validation sets for awe is 0.776).

Citations (3)

Summary

We haven't generated a summary for this paper yet.