Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolution of Activation Functions for Deep Learning-Based Image Classification (2206.12089v1)

Published 24 Jun 2022 in cs.NE

Abstract: Activation functions (AFs) play a pivotal role in the performance of neural networks. The Rectified Linear Unit (ReLU) is currently the most commonly used AF. Several replacements to ReLU have been suggested but improvements have proven inconsistent. Some AFs exhibit better performance for specific tasks, but it is hard to know a priori how to select the appropriate one(s). Studying both standard fully connected neural networks (FCNs) and convolutional neural networks (CNNs), we propose a novel, three-population, coevolutionary algorithm to evolve AFs, and compare it to four other methods, both evolutionary and non-evolutionary. Tested on four datasets -- MNIST, FashionMNIST, KMNIST, and USPS -- coevolution proves to be a performant algorithm for finding good AFs and AF architectures.

Citations (11)

Summary

We haven't generated a summary for this paper yet.