Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long time NLS approximation for the quasilinear Klein-Gordon equation on large domains under periodic boundary conditions (2206.11836v2)

Published 23 Jun 2022 in math.AP

Abstract: We provide the rigorous justification of the NLS approximation, in Sobolev regularity, for a class of quasilinear Hamiltonian Klein Gordon equations with quadratic nonlinearities on large one-dimensional tori $\T_L:=\mathbb{R}/(2\pi L \mathbb{Z})$, $L\gg 1$. We prove the validity of this approximation over a \emph{long-time} scale, meaning that it holds beyond the cubic nonlinear time scale. To achieve this result we need to perform a second-order analysis and deal with higher order resonant wave-interactions. The main difficulties are provided by the quasi-linear nature of the problem and the presence of small divisors arising from quasi-resonances. The proof is based on para-differential calculus, energy methods, normal form procedures and a high-low frequencies analysis.

Summary

We haven't generated a summary for this paper yet.