Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Determinism and the Lawlessness of Machine Learning Code (2206.11834v4)

Published 23 Jun 2022 in cs.CY and cs.LG

Abstract: Legal literature on ML tends to focus on harms, and thus tends to reason about individual model outcomes and summary error rates. This focus has masked important aspects of ML that are rooted in its reliance on randomness -- namely, stochasticity and non-determinism. While some recent work has begun to reason about the relationship between stochasticity and arbitrariness in legal contexts, the role of non-determinism more broadly remains unexamined. In this paper, we clarify the overlap and differences between these two concepts, and show that the effects of non-determinism, and consequently its implications for the law, become clearer from the perspective of reasoning about ML outputs as distributions over possible outcomes. This distributional viewpoint accounts for randomness by emphasizing the possible outcomes of ML. Importantly, this type of reasoning is not exclusive with current legal reasoning; it complements (and in fact can strengthen) analyses concerning individual, concrete outcomes for specific automated decisions. By illuminating the important role of non-determinism, we demonstrate that ML code falls outside of the cyberlaw frame of treating ``code as law,'' as this frame assumes that code is deterministic. We conclude with a brief discussion of what work ML can do to constrain the potentially harm-inducing effects of non-determinism, and we indicate where the law must do work to bridge the gap between its current individual-outcome focus and the distributional approach that we recommend.

Citations (5)

Summary

We haven't generated a summary for this paper yet.