Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-dimensional total absorption spectroscopy with conditional generative adversarial networks (2206.11792v3)

Published 23 Jun 2022 in nucl-ex and cs.AI

Abstract: We explore the use of machine learning techniques to remove the response of large volume $\gamma$-ray detectors from experimental spectra. Segmented $\gamma$-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual $\gamma$-ray energy (E$\gamma$) and total excitation energy (E$_x$). Analysis of TAS detector data is complicated by the fact that the E$_x$ and E$\gamma$ quantities are correlated, and therefore, techniques that simply unfold using E$x$ and E$\gamma$ response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold $E_{x}$ and $E_{\gamma}$ data in TAS detectors. Specifically, we employ a \texttt{Pix2Pix} cGAN, a generative modeling technique based on recent advances in deep learning, to treat \rawmatrix~ matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-$\gamma$ and double-$\gamma$ decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.

Summary

We haven't generated a summary for this paper yet.