Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Training with Autoencoders for Visual Anomaly Detection (2206.11723v8)

Published 23 Jun 2022 in cs.CV and cs.LG

Abstract: We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold. Here, regularized autoencoders provide a popular approach by learning the identity mapping on the set of normal examples, while trying to prevent good reconstruction on points outside of the manifold. Typically, this goal is implemented by controlling the capacity of the model, either directly by reducing the size of the bottleneck layer or implicitly by imposing some sparsity (or contraction) constraints on parts of the corresponding network. However, neither of these techniques does explicitly penalize the reconstruction of anomalous signals often resulting in poor detection. We tackle this problem by adapting a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples. Informally, our training objective regularizes the model to produce locally consistent reconstructions, while replacing irregularities by acting as a filter that removes anomalous patterns. To support this intuition, we perform a rigorous formal analysis of the proposed method and provide a number of interesting insights. In particular, we show that the resulting model resembles a non-linear orthogonal projection of partially corrupted images onto the submanifold of uncorrupted samples. On the other hand, we identify the orthogonal projection as an optimal solution for a number of regularized autoencoders including the contractive and denoising variants. We support our theoretical analysis by empirical evaluation of the resulting detection and localization performance of the proposed method. In particular, we achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (101)
  1. M. Haselmann, D. P. Gruber, and P. Tabatabai, “Anomaly detection using deep learning based image completion,” in 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018, Orlando, FL, USA, December 17-20, 2018, M. A. Wani, M. M. Kantardzic, M. S. Mouchaweh, J. Gama, and E. Lughofer, Eds.   IEEE, 2018, pp. 1237–1242.
  2. P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger, “Improving unsupervised defect segmentation by applying structural similarity to autoencoders,” in Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2019, Volume 5: VISAPP, Prague, Czech Republic, February 25-27, 2019, A. Trémeau, G. M. Farinella, and J. Braz, Eds.   SciTePress, 2019, pp. 372–380.
  3. L. Wang, D. Zhang, J. Guo, and Y. Han, “Image anomaly detection using normal data only by latent space resampling,” Applied Sciences, vol. 10, no. 23, 2020.
  4. P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020.   Computer Vision Foundation / IEEE, 2020, pp. 4182–4191.
  5. S. Venkataramanan, K. Peng, R. V. Singh, and A. Mahalanobis, “Attention guided anomaly localization in images,” in Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XVII, ser. Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., vol. 12362.   Springer, 2020, pp. 485–503.
  6. T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised anomaly detection with generative adversarial networks to guide marker discovery,” in Information Processing in Medical Imaging - 25th International Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings, ser. Lecture Notes in Computer Science, M. Niethammer, M. Styner, S. R. Aylward, H. Zhu, I. Oguz, P. Yap, and D. Shen, Eds., vol. 10265.   Springer, 2017, pp. 146–157.
  7. P. Napoletano, F. Piccoli, and R. Schettini, “Anomaly detection in nanofibrous materials by cnn-based self-similarity,” Sensors, vol. 18, no. 1, p. 209, 2018.
  8. T. Böttger and M. Ulrich, “Real-time texture error detection on textured surfaces with compressed sensing,” Pattern Recognit. Image Anal., vol. 26, pp. 88–94, 2016.
  9. W. Liu, R. Li, M. Zheng, S. Karanam, Z. Wu, B. Bhanu, R. J. Radke, and O. I. Camps, “Towards visually explaining variational autoencoders,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020.   IEEE, 2020, pp. 8639–8648.
  10. K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox, and P. V. Gehler, “Towards total recall in industrial anomaly detection,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.   IEEE, 2022, pp. 14 298–14 308.
  11. Q. Wan, L. Gao, X. Li, and L. Wen, “Industrial image anomaly localization based on gaussian clustering of pretrained feature,” IEEE Trans. Ind. Electron., vol. 69, no. 6, pp. 6182–6192, 2022.
  12. X. Chen and E. Konukoglu, “Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders,” CoRR, vol. abs/1806.04972, 2018. [Online]. Available: http://arxiv.org/abs/1806.04972
  13. T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth, “f-anogan: Fast unsupervised anomaly detection with generative adversarial networks,” Medical Image Anal., vol. 54, pp. 30–44, 2019.
  14. J. Tan, B. Hou, T. Day, J. M. Simpson, D. Rueckert, and B. Kainz, “Detecting outliers with poisson image interpolation,” in Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 - 24th International Conference, Strasbourg, France, September 27 - October 1, 2021, Proceedings, Part V, ser. Lecture Notes in Computer Science, M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, and C. Essert, Eds., vol. 12905.   Springer, 2021, pp. 581–591.
  15. D. Zimmerer, F. Isensee, J. Petersen, S. Kohl, and K. H. Maier-Hein, “Unsupervised anomaly localization using variational auto-encoders,” in Medical Image Computing and Computer Assisted Intervention - MICCAI 2019 - 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part IV, ser. Lecture Notes in Computer Science, D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou, P. Yap, and A. R. Khan, Eds., vol. 11767.   Springer, 2019, pp. 289–297.
  16. D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.   Computer Vision Foundation / IEEE, 2019, pp. 481–490.
  17. T. Defard, A. Setkov, A. Loesch, and R. Audigier, “Padim: A patch distribution modeling framework for anomaly detection and localization,” in Pattern Recognition. ICPR International Workshops and Challenges - Virtual Event, January 10-15, 2021, Proceedings, Part IV, ser. Lecture Notes in Computer Science, A. D. Bimbo, R. Cucchiara, S. Sclaroff, G. M. Farinella, T. Mei, M. Bertini, H. J. Escalante, and R. Vezzani, Eds., vol. 12664.   Springer, 2020, pp. 475–489.
  18. H. Hotelling, “Analysis of a complex of statistical variables into principal components,” Journal of Educational Psychology, vol. 24, no. 6, pp. 417–441, 1933.
  19. B. Schölkopf, A. J. Smola, and K. Müller, “Nonlinear component analysis as a kernel eigenvalue problem,” Neural Comput., vol. 10, no. 5, pp. 1299–1319, 1998.
  20. H. Hoffmann, “Kernel PCA for novelty detection,” Pattern Recognit., vol. 40, no. 3, pp. 863–874, 2007.
  21. B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the support of a high-dimensional distribution,” Neural Comput., vol. 13, no. 7, pp. 1443–1471, 2001.
  22. D. M. J. Tax and R. P. W. Duin, “Support vector data description,” Mach. Learn., vol. 54, no. 1, pp. 45–66, 2004.
  23. E. M. Knorr, R. T. Ng, and V. Tucakov, “Distance-based outliers: Algorithms and applications,” VLDB J., vol. 8, no. 3-4, pp. 237–253, 2000.
  24. S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining outliers from large data sets,” in Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, W. Chen, J. F. Naughton, and P. A. Bernstein, Eds.   ACM, 2000, pp. 427–438.
  25. E. Parzen, “On estimation of a probability density function and mode,” Ann. Math. Statist, vol. 33, no. 3, pp. 106–1076, 1962.
  26. E. Principi, F. Vesperini, S. Squartini, and F. Piazza, “Acoustic novelty detection with adversarial autoencoders,” in 2017 International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017.   IEEE, 2017, pp. 3324–3330.
  27. R. Chalapathy, A. K. Menon, and S. Chawla, “Robust, deep and inductive anomaly detection,” in Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part I, ser. Lecture Notes in Computer Science, M. Ceci, J. Hollmén, L. Todorovski, C. Vens, and S. Dzeroski, Eds., vol. 10534.   Springer, 2017, pp. 36–51.
  28. T. Kieu, B. Yang, C. Guo, and C. S. Jensen, “Outlier detection for time series with recurrent autoencoder ensembles,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, S. Kraus, Ed.   ijcai.org, 2019, pp. 2725–2732.
  29. C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017.   ACM, 2017, pp. 665–674.
  30. B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen, “Deep autoencoding gaussian mixture model for unsupervised anomaly detection,” in 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.   OpenReview.net, 2018.
  31. K. H. Kim, S. Shim, Y. Lim, J. Jeon, J. Choi, B. Kim, and A. S. Yoon, “Rapp: Novelty detection with reconstruction along projection pathway,” in 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.   OpenReview.net, 2020.
  32. J. Deng, Z. Zhang, E. Marchi, and B. W. Schuller, “Sparse autoencoder-based feature transfer learning for speech emotion recognition,” in 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, ACII 2013, Geneva, Switzerland, September 2-5, 2013.   IEEE Computer Society, 2013, pp. 511–516.
  33. S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning,” Pattern Recognit., vol. 58, pp. 121–134, 2016.
  34. M. Kim, J. Kim, J. Yu, and J. K. Choi, “Active anomaly detection based on deep one-class classification,” Pattern Recognit. Lett., vol. 167, pp. 18–24, 2023.
  35. L. Ruff, N. Görnitz, L. Deecke, S. A. Siddiqui, R. A. Vandermeulen, A. Binder, E. Müller, and M. Kloft, “Deep one-class classification,” in Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, ser. Proceedings of Machine Learning Research, J. G. Dy and A. Krause, Eds., vol. 80.   PMLR, 2018, pp. 4390–4399.
  36. I. Golan and R. El-Yaniv, “Deep anomaly detection using geometric transformations,” in Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp. 9781–9791.
  37. J. Tack, S. Mo, J. Jeong, and J. Shin, “CSI: novelty detection via contrastive learning on distributionally shifted instances,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.
  38. V. Zavrtanik, M. Kristan, and D. Skocaj, “Dræm - A discriminatively trained reconstruction embedding for surface anomaly detection,” in 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021.   IEEE, 2021, pp. 8310–8319.
  39. ——, “Reconstruction by inpainting for visual anomaly detection,” Pattern Recognit., vol. 112, p. 107706, 2021.
  40. C. Li, K. Sohn, J. Yoon, and T. Pfister, “Cutpaste: Self-supervised learning for anomaly detection and localization,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021.   Computer Vision Foundation / IEEE, 2021, pp. 9664–9674.
  41. J. Pirnay and K. Chai, “Inpainting transformer for anomaly detection,” in Image Analysis and Processing - ICIAP 2022 - 21st International Conference, Lecce, Italy, May 23-27, 2022, Proceedings, Part II, ser. Lecture Notes in Computer Science, S. Sclaroff, C. Distante, M. Leo, G. M. Farinella, and F. Tombari, Eds., vol. 13232.   Springer, 2022, pp. 394–406.
  42. S. Lee, S. Lee, and B. C. Song, “CFA: coupled-hypersphere-based feature adaptation for target-oriented anomaly localization,” IEEE Access, vol. 10, pp. 78 446–78 454, 2022.
  43. D. Kim, C. Park, S. Cho, and S. Lee, “FAPM: fast adaptive patch memory for real-time industrial anomaly detection,” CoRR, vol. abs/2211.07381, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2211.07381
  44. J. Bae, J. Lee, and S. Kim, “Image anomaly detection and localization with position and neighborhood information,” CoRR, vol. abs/2211.12634, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2211.12634
  45. C. Tsai, T. Wu, and S. Lai, “Multi-scale patch-based representation learning for image anomaly detection and segmentation,” in IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022, Waikoloa, HI, USA, January 3-8, 2022.   IEEE, 2022, pp. 3065–3073.
  46. Y. Zou, J. Jeong, L. Pemula, D. Zhang, and O. Dabeer, “Spot-the-difference self-supervised pre-training for anomaly detection and segmentation,” in Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXX, ser. Lecture Notes in Computer Science, S. Avidan, G. J. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds., vol. 13690.   Springer, 2022, pp. 392–408.
  47. N. Li, K. Jiang, Z. Ma, X. Wei, X. Hong, and Y. Gong, “Anomaly detection via self-organizing map,” in 2021 IEEE International Conference on Image Processing, ICIP 2021, Anchorage, AK, USA, September 19-22, 2021.   IEEE, 2021, pp. 974–978.
  48. M. Salehi, N. Sadjadi, S. Baselizadeh, M. H. Rohban, and H. R. Rabiee, “Multiresolution knowledge distillation for anomaly detection,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021.   Computer Vision Foundation / IEEE, 2021, pp. 14 902–14 912.
  49. H. Deng and X. Li, “Anomaly detection via reverse distillation from one-class embedding,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.   IEEE, 2022, pp. 9727–9736.
  50. M. Rudolph, T. Wehrbein, B. Rosenhahn, and B. Wandt, “Asymmetric student-teacher networks for industrial anomaly detection,” in IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023, Waikoloa, HI, USA, January 2-7, 2023.   IEEE, 2023, pp. 2591–2601.
  51. Y. Cao, Q. Wan, W. Shen, and L. Gao, “Informative knowledge distillation for image anomaly segmentation,” Knowl. Based Syst., vol. 248, p. 108846, 2022.
  52. K. Zhang, B. Wang, and C. J. Kuo, “Pedenet: Image anomaly localization via patch embedding and density estimation,” Pattern Recognit. Lett., vol. 153, pp. 144–150, 2022.
  53. Q. Wan, L. Gao, X. Li, and L. Wen, “Unsupervised image anomaly detection and segmentation based on pretrained feature mapping,” IEEE Trans. Ind. Informatics, vol. 19, no. 3, pp. 2330–2339, 2023.
  54. Q. Wan, Y. Cao, L. Gao, W. Shen, and X. Li, “Position encoding enhanced feature mapping for image anomaly detection,” in 18th IEEE International Conference on Automation Science and Engineering, CASE 2022, Mexico City, Mexico, August 20-24, 2022.   IEEE, 2022, pp. 876–881.
  55. Y. Zheng, X. Wang, R. Deng, T. Bao, R. Zhao, and L. Wu, “Focus your distribution: Coarse-to-fine non-contrastive learning for anomaly detection and localization,” in IEEE International Conference on Multimedia and Expo, ICME 2022, Taipei, Taiwan, July 18-22, 2022.   IEEE, 2022, pp. 1–6.
  56. D. A. Gudovskiy, S. Ishizaka, and K. Kozuka, “CFLOW-AD: real-time unsupervised anomaly detection with localization via conditional normalizing flows,” in IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022, Waikoloa, HI, USA, January 3-8, 2022.   IEEE, 2022, pp. 1819–1828.
  57. Y. Kim, H. Jang, D. Lee, and H. Choi, “Altub: Alternating training method to update base distribution of normalizing flow for anomaly detection,” CoRR, vol. abs/2210.14913, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2210.14913
  58. J. Yi and S. Yoon, “Patch SVDD: patch-level SVDD for anomaly detection and segmentation,” in Computer Vision - ACCV 2020 - 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 - December 4, 2020, Revised Selected Papers, Part VI, ser. Lecture Notes in Computer Science, H. Ishikawa, C. Liu, T. Pajdla, and J. Shi, Eds., vol. 12627.   Springer, 2020, pp. 375–390.
  59. C. Hu, K. Chen, and H. Shao, “A semantic-enhanced method based on deep SVDD for pixel-wise anomaly detection,” in 2021 IEEE International Conference on Multimedia and Expo, ICME 2021, Shenzhen, China, July 5-9, 2021.   IEEE, 2021, pp. 1–6.
  60. M. Yang, P. Wu, and H. Feng, “Memseg: A semi-supervised method for image surface defect detection using differences and commonalities,” Eng. Appl. Artif. Intell., vol. 119, p. 105835, 2023.
  61. Y. Yan, D. Wang, G. Zhou, and Q. Chen, “Unsupervised anomaly segmentation via multilevel image reconstruction and adaptive attention-level transition,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–12, 2021.
  62. A. Collin and C. D. Vleeschouwer, “Improved anomaly detection by training an autoencoder with skip connections on images corrupted with stain-shaped noise,” in 25th International Conference on Pattern Recognition, ICPR 2020, Virtual Event / Milan, Italy, January 10-15, 2021.   IEEE, 2020, pp. 7915–7922.
  63. X. Tao, D. Zhang, W. Ma, Z. Hou, Z. Lu, and C. Adak, “Unsupervised anomaly detection for surface defects with dual-siamese network,” IEEE Trans. Ind. Informatics, vol. 18, no. 11, pp. 7707–7717, 2022.
  64. T. Liu, B. Li, Z. Zhao, X. Du, B. Jiang, and L. Geng, “Reconstruction from edge image combined with color and gradient difference for industrial surface anomaly detection,” CoRR, vol. abs/2210.14485, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2210.14485
  65. D. Kim, D. Jeong, H. Kim, K. Chong, S. Kim, and H. Cho, “Spatial contrastive learning for anomaly detection and localization,” IEEE Access, vol. 10, pp. 17 366–17 376, 2022.
  66. C. Huang, Q. Xu, Y. Wang, Y. Wang, and Y. Zhang, “Self-supervised masking for unsupervised anomaly detection and localization,” CoRR, vol. abs/2205.06568, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2205.06568
  67. P. Liznerski, L. Ruff, R. A. Vandermeulen, B. J. Franks, M. Kloft, and K. R. Müller, “Explainable deep one-class classification,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.   OpenReview.net, 2021.
  68. J. Bae, J. Lee, and S. Kim, “PNI: industrial anomaly detection using position and neighborhood information,” in IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023.   IEEE, 2023, pp. 6350–6360.
  69. H. M. Schlüter, J. Tan, B. Hou, and B. Kainz, “Natural synthetic anomalies for self-supervised anomaly detection and localization,” in Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXXI, ser. Lecture Notes in Computer Science, S. Avidan, G. J. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds., vol. 13691.   Springer, 2022, pp. 474–489.
  70. D. Dehaene, O. Frigo, S. Combrexelle, and P. Eline, “Iterative energy-based projection on a normal data manifold for anomaly localization,” in 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.   OpenReview.net, 2020.
  71. J. W. Song, K. Kong, Y. I. Park, S. G. Kim, and S. Kang, “Anoseg: Anomaly segmentation network using self-supervised learning,” CoRR, vol. abs/2110.03396, 2021. [Online]. Available: https://arxiv.org/abs/2110.03396
  72. Y. Lee and P. Kang, “Anovit: Unsupervised anomaly detection and localization with vision transformer-based encoder-decoder,” IEEE Access, vol. 10, pp. 46 717–46 724, 2022.
  73. J. Jiang, J. Zhu, M. Bilal, Y. Cui, N. Kumar, R. Dou, F. Su, and X. Xu, “Masked swin transformer unet for industrial anomaly detection,” IEEE Trans. Ind. Informatics, vol. 19, no. 2, pp. 2200–2209, 2023.
  74. J. Wu, D. Chen, C. Fuh, and T. Liu, “Learning unsupervised metaformer for anomaly detection,” in 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021.   IEEE, 2021, pp. 4349–4358.
  75. X. Jiang, J. Liu, J. Wang, Q. Nie, K. Wu, Y. Liu, C. Wang, and F. Zheng, “Softpatch: Unsupervised anomaly detection with noisy data,” in NeurIPS, 2022.
  76. L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, W. Samek, M. Kloft, T. G. Dietterich, and K. R. Müller, “A unifying review of deep and shallow anomaly detection,” Proc. IEEE, vol. 109, no. 5, pp. 756–795, 2021.
  77. P. Chong, L. Ruff, M. Kloft, and A. Binder, “Simple and effective prevention of mode collapse in deep one-class classification,” in 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020.   IEEE, 2020, pp. 1–9.
  78. C. Hu, Y. Feng, H. Kamigaito, H. Takamura, and M. Okumura, “One-class text classification with multi-modal deep support vector data description,” in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, P. Merlo, J. Tiedemann, and R. Tsarfaty, Eds.   Association for Computational Linguistics, 2021, pp. 3378–3390.
  79. M. a. Ranzato, Y.-l. Boureau, and Y. Cun, “Sparse feature learning for deep belief networks,” in Advances in Neural Information Processing Systems, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds., vol. 20.   Curran Associates, Inc., 2007.
  80. Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, “On optimization methods for deep learning,” in Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, L. Getoor and T. Scheffer, Eds., 2011, pp. 265–272.
  81. S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-encoders: Explicit invariance during feature extraction,” in Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011.   Omnipress, 2011, pp. 833–840.
  82. G. Alain and Y. Bengio, “What regularized auto-encoders learn from the data-generating distribution,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 3563–3593, 2014.
  83. D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros, “Context encoders: Feature learning by inpainting,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016.   IEEE Computer Society, 2016, pp. 2536–2544.
  84. S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally and locally consistent image completion,” ACM Trans. Graph., vol. 36, no. 4, pp. 107:1–107:14, 2017.
  85. J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Generative image inpainting with contextual attention,” in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018.   IEEE Computer Society, 2018, pp. 5505–5514.
  86. G. Liu, F. A. Reda, K. J. Shih, T. Wang, A. Tao, and B. Catanzaro, “Image inpainting for irregular holes using partial convolutions,” in Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XI, ser. Lecture Notes in Computer Science, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., vol. 11215.   Springer, 2018, pp. 89–105.
  87. J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Free-form image inpainting with gated convolution,” in 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019.   IEEE, 2019, pp. 4470–4479.
  88. A. Bhattad, J. Rock, and D. A. Forsyth, “Detecting anomalous faces with ’no peeking’ autoencoders,” CoRR, vol. abs/1802.05798, 2018. [Online]. Available: http://arxiv.org/abs/1802.05798
  89. Z. Liu, Y. Zhou, Y. Xu, and Z. Wang, “Simplenet: A simple network for image anomaly detection and localization,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023.   IEEE, 2023, pp. 20 402–20 411.
  90. P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Steger, “The mvtec anomaly detection dataset: A comprehensive real-world dataset for unsupervised anomaly detection,” Int. J. Comput. Vis., vol. 129, no. 4, pp. 1038–1059, 2021.
  91. M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi, “Describing textures in the wild,” in Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.
  92. R. Schuster, O. Wasenmüller, C. Unger, and D. Stricker, “SDC - stacked dilated convolution: A unified descriptor network for dense matching tasks,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.   Computer Vision Foundation / IEEE, 2019, pp. 2556–2565.
  93. P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting and composing robust features with denoising autoencoders,” in Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008, ser. ACM International Conference Proceeding Series, W. W. Cohen, A. McCallum, and S. T. Roweis, Eds., vol. 307.   ACM, 2008, pp. 1096–1103.
  94. M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and variational inference,” Foundations and Trends in Machine Learning, vol. 1, no. 1-2, pp. 1–305, 2008.
  95. J. Lafferty, “Conditional random fields: Probabilistic models for segmenting and labeling sequence data,” in ICML.   Morgan Kaufmann, 2001, pp. 282–289.
  96. A. Bauer, S. Nakajima, and K.-R. Müller, “Efficient exact inference with loss augmented objective in structured learning,” IEEE Trans. Neural Netw. Learning Syst., vol. 28, no. 11, pp. 2566 – 2579, 2017.
  97. A. Bauer, S. Nakajima, N. Görnitz, and K.-R. Müller, “Partial optimality of dual decomposition for map inference in pairwise mrfs,” in Proceedings of Machine Learning Research, ser. Proceedings of Machine Learning Research, K. Chaudhuri and M. Sugiyama, Eds., vol. 89, 16–18 Apr 2019, pp. 1696–1703.
  98. A. Bauer, S. Nakajima, and K.-R. Müller, “Polynomial-time constrained message passing for exact map inference on discrete models with global dependencies,” Mathematics, vol. 11, no. 12, 2023.
  99. P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Mvtec AD - A comprehensive real-world dataset for unsupervised anomaly detection,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.   Computer Vision Foundation / IEEE, 2019, pp. 9592–9600.
  100. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.
  101. Y. Zhou, X. Xu, J. Song, F. Shen, and H. T. Shen, “Msflow: Multi-scale flow-based framework for unsupervised anomaly detection,” CoRR, vol. abs/2308.15300, 2023.
Citations (8)

Summary

We haven't generated a summary for this paper yet.