Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measurement and applications of position bias in a marketplace search engine (2206.11720v2)

Published 23 Jun 2022 in cs.IR and cs.LG

Abstract: Search engines intentionally influence user behavior by picking and ranking the list of results. Users engage with the highest results both because of their prominent placement and because they are typically the most relevant documents. Search engine ranking algorithms need to identify relevance while incorporating the influence of the search engine itself. This paper describes our efforts at Thumbtack to understand the impact of ranking, including the empirical results of a randomization program. In the context of a consumer marketplace we discuss practical details of model choice, experiment design, bias calculation, and machine learning model adaptation. We include a novel discussion of how ranking bias may not only affect labels, but also model features. The randomization program led to improved models, motivated internal scenario analysis, and enabled user-facing scenario tooling.

Citations (1)

Summary

We haven't generated a summary for this paper yet.