Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAGIC: A Method for Assessing Cyber Incidents Occurrence (2206.11586v1)

Published 23 Jun 2022 in cs.CR

Abstract: The assessment of cyber risk plays a crucial role for cybersecurity management, and has become a compulsory task for certain types of companies and organizations. This makes the demand for reliable cyber risk assessment tools continuously increasing, especially concerning quantitative tools based on statistical approaches. Probabilistic cyber risk assessment methods, however, follow the general paradigm of probabilistic risk assessment, which requires the magnitude and the likelihood of incidents as inputs. Unfortunately, for cyber incidents, the likelihood of occurrence is hard to estimate based on historical and publicly available data; so, expert evaluations are commonly used, which however leave space to subjectivity. In this paper, we propose a novel probabilistic model, called MAGIC (Method for AssessinG cyber Incidents oCcurrence), to compute the likelihood of occurrence of a cyber incident, based on the evaluation of the cyber posture of the target organization. This allows deriving tailor-made inputs for probabilistic risk assessment methods, like HTMA (How To Measure Anything in cybersecurity risk), FAIR (Factor Analysis of Information Risk) and others, thus considerably reducing the margin of subjectivity in the assessment of cyber risk. We corroborate our approach through a qualitative and a quantitative comparison with several classical methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Massimo Battaglioni (17 papers)
  2. Giulia Rafaiani (5 papers)
  3. Franco Chiaraluce (53 papers)
  4. Marco Baldi (161 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.