Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Langevin Differential Inclusions with Applications to Machine Learning (2206.11533v3)

Published 23 Jun 2022 in math.OC, cs.LG, cs.NA, and math.NA

Abstract: Stochastic differential equations of Langevin-diffusion form have received significant attention, thanks to their foundational role in both Bayesian sampling algorithms and optimization in machine learning. In the latter, they serve as a conceptual model of the stochastic gradient flow in training over-parameterized models. However, the literature typically assumes smoothness of the potential, whose gradient is the drift term. Nevertheless, there are many problems for which the potential function is not continuously differentiable, and hence the drift is not Lipschitz continuous everywhere. This is exemplified by robust losses and Rectified Linear Units in regression problems. In this paper, we show some foundational results regarding the flow and asymptotic properties of Langevin-type Stochastic Differential Inclusions under assumptions appropriate to the machine-learning settings. In particular, we show strong existence of the solution, as well as an asymptotic minimization of the canonical free-energy functional.

Citations (2)

Summary

We haven't generated a summary for this paper yet.