Global Existence for Nonlocal Quasilinear Diffusion Systems in Non-Isotropic Non-Divergence Form (2206.11415v1)
Abstract: Consider the quasilinear diffusion problem [\begin{cases}\mathbf{u}'+\Pi(t,x,\mathbf{u},\Sigma \mathbf{u})\mathbb{A}\mathbf{u}=\mathbf{f}(t,x,\mathbf{u},\Sigma \mathbf{u})&\text{ in }]0,T[\times\Omega,\\mathbf{u}=\mathbf{0}&\text{ in }]0,T[\times\Omegac,\\mathbf{u}(0,\cdot)=\mathbf{u}_0(\cdot)&\text{ in }\Omega\end{cases}] for an open set $\Omega\subset\mathbb{R}n$, $\mathbf{u}0\in \mathbf{H}s_0(\Omega):=[Hs_0(\Omega)]m$ and any $T\in]0,\infty[$, where $\Sigma \mathbf{u}\in \mathbb{R}q$ for $0<q\leq m\times n$ represents fractional or nonlocal derivatives with order $\sigma$ with $\sigma<2s$ for all $0<s\leq1$, including the classical gradient and derivatives of order greater than 1. We show global existence results for various quasilinear diffusion systems in non-divergence form, for different linear operators $\mathbb{A}$, including local elliptic systems, anisotropic fractional equations and systems, and anisotropic nonlocal operators, of the following type [(\mathbb{A}\mathbf{u})i=-\sum _{\alpha,\beta,j} \partial\alpha(A{\alpha\beta}{ij}\partial\beta uj),\quad \mathbb{A}u=- Ds(A(x)Dsu),\quad\text{ and }\quad (\mathbb{A}\mathbf{u})i=\int_{\mathbb{R}n}A_{ij}(x,y)\frac{uj(x)-uj(y)}{|x-y|{n+2s}}\,dy,] for coercive, invertible matrices $\Pi$ and suitable vectorial functions $\mathbf{f}$.