Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion Gait: Gait Recognition via Motion Excitation (2206.11080v1)

Published 22 Jun 2022 in cs.CV

Abstract: Gait recognition, which can realize long-distance and contactless identification, is an important biometric technology. Recent gait recognition methods focus on learning the pattern of human movement or appearance during walking, and construct the corresponding spatio-temporal representations. However, different individuals have their own laws of movement patterns, simple spatial-temporal features are difficult to describe changes in motion of human parts, especially when confounding variables such as clothing and carrying are included, thus distinguishability of features is reduced. In this paper, we propose the Motion Excitation Module (MEM) to guide spatio-temporal features to focus on human parts with large dynamic changes, MEM learns the difference information between frames and intervals, so as to obtain the representation of temporal motion changes, it is worth mentioning that MEM can adapt to frame sequences with uncertain length, and it does not add any additional parameters. Furthermore, we present the Fine Feature Extractor (FFE), which independently learns the spatio-temporal representations of human body according to different horizontal parts of individuals. Benefiting from MEM and FFE, our method innovatively combines motion change information, significantly improving the performance of the model under cross appearance conditions. On the popular dataset CASIA-B, our proposed Motion Gait is better than the existing gait recognition methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.