Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Unpaired Multi-modal Medical Image Segmentation via Learning Structured Semantic Consistency (2206.10571v3)

Published 21 Jun 2022 in cs.CV

Abstract: Integrating multi-modal data to promote medical image analysis has recently gained great attention. This paper presents a novel scheme to learn the mutual benefits of different modalities to achieve better segmentation results for unpaired multi-modal medical images. Our approach tackles two critical issues of this task from a practical perspective: (1) how to effectively learn the semantic consistencies of various modalities (e.g., CT and MRI), and (2) how to leverage the above consistencies to regularize the network learning while preserving its simplicity. To address (1), we leverage a carefully designed External Attention Module (EAM) to align semantic class representations and their correlations of different modalities. To solve (2), the proposed EAM is designed as an external plug-and-play one, which can be discarded once the model is optimized. We have demonstrated the effectiveness of the proposed method on two medical image segmentation scenarios: (1) cardiac structure segmentation, and (2) abdominal multi-organ segmentation. Extensive results show that the proposed method outperforms its counterparts by a wide margin.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jie Yang (516 papers)
  2. Ye Zhu (75 papers)
  3. Chaoqun Wang (35 papers)
  4. Zhen Li (334 papers)
  5. Ruimao Zhang (84 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.