Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An axiomatic approach to higher order set theory (2206.10060v2)

Published 21 Jun 2022 in math.LO and math.CT

Abstract: Higher order set theory has been a topic of interest for some time, with recent efforts focused on the strength of second order set theories [KW16]. In this paper we strive to present one 'theory of collections' that allows for a formal consideration of 'countable higher order set theory'. We will see that this theory is equiconsistent with $ZFC$ plus the existence of a countable collection of inaccessible cardinals. We will also see that this theory serves as a canonical foundation for some parts of mathematics not covered by standard set/class theories (e.g. $ZFC$ or $MK$), such as category theory.

Summary

We haven't generated a summary for this paper yet.