Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from Positive and Negative Examples: New Proof for Binary Alphabets (2206.10025v1)

Published 20 Jun 2022 in cs.FL and cs.CC

Abstract: One of the most fundamental problems in computational learning theory is the the problem of learning a finite automaton $A$ consistent with a finite set $P$ of positive examples and with a finite set $N$ of negative examples. By consistency, we mean that $A$ accepts all strings in $P$ and rejects all strings in $N$. It is well known that this problem is NP-complete. In the literature, it is stated that this NP-hardness holds even in the case of a binary alphabet. As a standard reference for this theorem, the work of Gold from 1978 is either cited or adapted. But as a crucial detail, the work of Gold actually considered Mealy machines and not deterministic finite state automata (DFAs) as they are considered nowadays. As Mealy automata are equipped with an output function, they can be more compact than DFAs which accept the same language. We show that the adaptions of Gold's construction for Mealy machines stated in the literature have some issues and give a new construction for DFAs with a binary alphabet ourselves.

Citations (2)

Summary

We haven't generated a summary for this paper yet.