Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Preserving Discontinuous Galerkin Methods for a Linear Boltzmann Semiconductor Model (2206.09805v2)

Published 20 Jun 2022 in math.NA and cs.NA

Abstract: A key property of the linear Boltzmann semiconductor model is that as the collision frequency tends to infinity, the phase space density $f = f(x,v,t)$ converges to an isotropic function $M(v)\rho(x,t)$, called the drift-diffusion limit, where $M$ is a Maxwellian and the physical density $\rho$ satisfies a second-order parabolic PDE known as the drift-diffusion equation. Numerical approximations that mirror this property are said to be asymptotic preserving. In this paper we build two discontinuous Galerkin methods to the semiconductor model: one with the standard upwinding flux and the other with a $\varepsilon$-scaled Lax-Friedrichs flux, where 1/$\varepsilon$ is the scale of the collision frequency. We show that these schemes are uniformly stable in $\varepsilon$ and are asymptotic preserving. In particular, we discuss what properties the discrete Maxwellian must satisfy in order for the schemes to converge in $\varepsilon$ to an accurate $h$-approximation of the drift diffusion limit. Discrete versions of the drift-diffusion equation and error estimates in several norms with respect to $\varepsilon$ and the spacial resolution are also included.

Citations (1)

Summary

We haven't generated a summary for this paper yet.