Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monolithic parabolic regularization of the MHD equations and entropy principles (2206.09568v2)

Published 20 Jun 2022 in math.NA and cs.NA

Abstract: We show at the PDE level that the monolithic parabolic regularization of the equations of ideal magnetohydrodynamics (MHD) is compatible with all the generalized entropies, fulfills the minimum entropy principle, and preserves the positivity of density and internal energy. We then numerically investigate this regularization for the MHD equations using continuous finite elements in space and explicit strong stability preserving Runge-Kuta methods in time. The artificial viscosity coefficient of the regularization term is constructed to be proportional to the entropy residual of MHD. It is shown that the method has a high order of accuracy for smooth problems and captures strong shocks and discontinuities accurately for non-smooth problems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.