Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Step Towards Preserving Speakers' Identity While Detecting Depression Via Speaker Disentanglement (2206.09530v2)

Published 20 Jun 2022 in eess.AS and q-bio.QM

Abstract: Preserving a patient's identity is a challenge for automatic, speech-based diagnosis of mental health disorders. In this paper, we address this issue by proposing adversarial disentanglement of depression characteristics and speaker identity. The model used for depression classification is trained in a speaker-identity-invariant manner by minimizing depression prediction loss and maximizing speaker prediction loss during training. The effectiveness of the proposed method is demonstrated on two datasets - DAIC-WOZ (English) and CONVERGE (Mandarin), with three feature sets (Mel-spectrograms, raw-audio signals, and the last-hidden-state of Wav2vec2.0), using a modified DepAudioNet model. With adversarial training, depression classification improves for every feature when compared to the baseline. Wav2vec2.0 features with adversarial learning resulted in the best performance (F1-score of 69.2% for DAIC-WOZ and 91.5% for CONVERGE). Analysis of the class-separability measure (J-ratio) of the hidden states of the DepAudioNet model shows that when adversarial learning is applied, the backend model loses some speaker-discriminability while it improves depression-discriminability. These results indicate that there are some components of speaker identity that may not be useful for depression detection and minimizing their effects provides a more accurate diagnosis of the underlying disorder and can safeguard a speaker's identity.

Citations (18)

Summary

We haven't generated a summary for this paper yet.