Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Source Speakers for Voice Conversion based Spoofing Attacks on Speaker Verification Systems (2206.09103v2)

Published 18 Jun 2022 in eess.AS and cs.CR

Abstract: An automatic speaker verification system aims to verify the speaker identity of a speech signal. However, a voice conversion system could manipulate a person's speech signal to make it sound like another speaker's voice and deceive the speaker verification system. Most countermeasures for voice conversion-based spoofing attacks are designed to discriminate bona fide speech from spoofed speech for speaker verification systems. In this paper, we investigate the problem of source speaker identification -- inferring the identity of the source speaker given the voice converted speech. To perform source speaker identification, we simply add voice-converted speech data with the label of source speaker identity to the genuine speech dataset during speaker embedding network training. Experimental results show the feasibility of source speaker identification when training and testing with converted speeches from the same voice conversion model(s). In addition, our results demonstrate that having more converted utterances from various voice conversion model for training helps improve the source speaker identification performance on converted utterances from unseen voice conversion models.

Citations (9)

Summary

We haven't generated a summary for this paper yet.