Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy reconstruction for large liquid scintillator detectors with machine learning techniques: aggregated features approach (2206.09040v2)

Published 17 Jun 2022 in physics.ins-det and cs.LG

Abstract: Large-scale detectors consisting of a liquid scintillator target surrounded by an array of photo-multiplier tubes (PMTs) are widely used in the modern neutrino experiments: Borexino, KamLAND, Daya Bay, Double Chooz, RENO, and the upcoming JUNO with its satellite detector TAO. Such apparatuses are able to measure neutrino energy which can be derived from the amount of light and its spatial and temporal distribution over PMT channels. However, achieving a fine energy resolution in large-scale detectors is challenging. In this work, we present machine learning methods for energy reconstruction in the JUNO detector, the most advanced of its type. We focus on positron events in the energy range of 0-10 MeV which corresponds to the main signal in JUNO -- neutrinos originated from nuclear reactor cores and detected via the inverse beta decay channel. We consider the following models: Boosted Decision Trees and Fully Connected Deep Neural Network, trained on aggregated features, calculated using the information collected by PMTs. We describe the details of our feature engineering procedure and show that machine learning models can provide the energy resolution $\sigma = 3\%$ at 1 MeV using subsets of engineered features. The dataset for model training and testing is generated by the Monte Carlo method with the official JUNO software.

Citations (5)

Summary

We haven't generated a summary for this paper yet.