Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dead ends on wreath products and lamplighter groups (2206.08775v2)

Published 17 Jun 2022 in math.GR and math.CO

Abstract: For any finite group $A$ and any finitely generated group $B$, we prove that the corresponding lamplighter group $A\wr B$ admits a standard generating set with unbounded depth, and that if $B$ is abelian then the above is true for every standard generating set. This generalizes the case where $B=\mathbb{Z}$ together with its cyclic generator due to Cleary and Taback. When $B=H*K$ is the free product of two finite groups $H$ and $K$, we characterize which standard generators of the associated lamplighter group have unbounded depth in terms of a geometrical constant related to the Cayley graphs of $H$ and $K$. In particular, we find differences with the one-dimensional case: the lamplighter group over the free product of two sufficiently large finite cyclic groups has uniformly bounded depth with respect to some standard generating set.

Summary

We haven't generated a summary for this paper yet.