Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Galois LCD Codes Over Fq + uFq + vFq + uvFq (2206.08725v1)

Published 17 Jun 2022 in cs.IT and math.IT

Abstract: In \cite{anote}, Wu and Shi studied $ l $-Galois LCD codes over finite chain ring $\mathcal{R}=\mathbb{F}_q+u\mathbb{F}_q$, where $u2=0$ and $ q=pe$ for some prime $p$ and positive integer $e$. In this work, we extend the results to the finite non chain ring $ \mathcal{R} =\mathbb{F}_q+u\mathbb{F}_q+v\mathbb{F}_q+uv\mathbb{F}_q$, where $u2=u,v2=v $ and $ uv=vu $. We define a correspondence between $ l $-Galois dual of linear codes over $ \mathcal{R} $ and $ l $-Galois dual of its component codes over $ \mathbb{F}_q .$ Further, we construct Euclidean LCD and $ l $-Galois LCD codes from linear code over $ \mathcal{R} $. This consequently leads us to prove that any linear code over $ \mathcal{R} $ is equivalent to Euclidean ($ q>3 $) and $ l $-Galois LCD ($0<l<e$, and $p{e-l}+1\mid pe-1$) code over $ \mathcal{R} .$ Finally, we investigate MDS codes over $ \mathcal{R} .$

Citations (1)

Summary

We haven't generated a summary for this paper yet.