Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Computing Optimal Linear Diagrams (2206.08631v2)

Published 17 Jun 2022 in cs.CG, cs.DS, and cs.HC

Abstract: Linear diagrams are an effective way to visualize set-based data by representing elements as columns and sets as rows with one or more horizontal line segments, whose vertical overlaps with other rows indicate set intersections and their contained elements. The efficacy of linear diagrams heavily depends on having few line segments. The underlying minimization problem has already been explored heuristically, but its computational complexity has yet to be classified. In this paper, we show that minimizing line segments in linear diagrams is equivalent to a well-studied NP-hard problem, and extend the NP-hardness to a restricted setting. We develop new algorithms for computing linear diagrams with minimum number of line segments that build on a traveling salesperson (TSP) formulation and allow constraints on the element orders, namely, forcing two sets to be drawn as single line segments, giving weights to sets, and allowing hierarchical constraints via PQ-trees. We conduct an experimental evaluation and compare previous algorithms for minimizing line segments with our TSP formulation, showing that a state-of-the art TSP-solver can solve all considered instances optimally, most of them within few milliseconds.

Citations (2)

Summary

We haven't generated a summary for this paper yet.