Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embarrassingly Parallel Independent Training of Multi-Layer Perceptrons with Heterogeneous Architectures (2206.08369v1)

Published 14 Jun 2022 in cs.LG

Abstract: The definition of a Neural Network architecture is one of the most critical and challenging tasks to perform. In this paper, we propose ParallelMLPs. ParallelMLPs is a procedure to enable the training of several independent Multilayer Perceptron Neural Networks with a different number of neurons and activation functions in parallel by exploring the principle of locality and parallelization capabilities of modern CPUs and GPUs. The core idea of this technique is to use a Modified Matrix Multiplication that replaces an ordinal matrix multiplication by two simple matrix operations that allow separate and independent paths for gradient flowing, which can be used in other scenarios. We have assessed our algorithm in simulated datasets varying the number of samples, features and batches using 10,000 different models. We achieved a training speedup from 1 to 4 orders of magnitude if compared to the sequential approach.

Citations (2)

Summary

We haven't generated a summary for this paper yet.