Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DCASE 2022: Comparative Analysis Of CNNs For Acoustic Scene Classification Under Low-Complexity Considerations (2206.08007v1)

Published 16 Jun 2022 in cs.SD, cs.LG, and eess.AS

Abstract: Acoustic scene classification is an automatic listening problem that aims to assign an audio recording to a pre-defined scene based on its audio data. Over the years (and in past editions of the DCASE) this problem has often been solved with techniques known as ensembles (use of several machine learning models to combine their predictions in the inference phase). While these solutions can show performance in terms of accuracy, they can be very expensive in terms of computational capacity, making it impossible to deploy them in IoT devices. Due to the drift in this field of study, this task has two limitations in terms of model complexity. It should be noted that there is also the added complexity of mismatching devices (the audios provided are recorded by different sources of information). This technical report makes a comparative study of two different network architectures: conventional CNN and Conv-mixer. Although both networks exceed the baseline required by the competition, the conventional CNN shows a higher performance, exceeding the baseline by 8 percentage points. Solutions based on Conv-mixer architectures show worse performance although they are much lighter solutions.

Summary

We haven't generated a summary for this paper yet.