Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance analysis of coreset selection for quantum implementation of K-Means clustering algorithm (2206.07852v1)

Published 16 Jun 2022 in quant-ph, cs.ET, and cs.LG

Abstract: Quantum computing is anticipated to offer immense computational capabilities which could provide efficient solutions to many data science problems. However, the current generation of quantum devices are small and noisy, which makes it difficult to process large data sets relevant for practical problems. Coreset selection aims to circumvent this problem by reducing the size of input data without compromising the accuracy. Recent work has shown that coreset selection can help to implement quantum K-Means clustering problem. However, the impact of coreset selection on the performance of quantum K-Means clustering has not been explored. In this work, we compare the relative performance of two coreset techniques (BFL16 and ONESHOT), and the size of coreset construction in each case, with respect to a variety of data sets and layout the advantages and limitations of coreset selection in implementing quantum algorithms. We also investigated the effect of depolarisation quantum noise and bit-flip error, and implemented the Quantum AutoEncoder technique for surpassing the noise effect. Our work provides useful insights for future implementation of data science algorithms on near-term quantum devices where problem size has been reduced by coreset selection.

Citations (2)

Summary

We haven't generated a summary for this paper yet.