Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Infused Fuzzy Generative Adversarial Network for Robust Failure Prognosis (2206.07762v1)

Published 15 Jun 2022 in cs.AI

Abstract: Prognostics aid in the longevity of fielded systems or products. Quantifying the system's current health enable prognosis to enhance the operator's decision-making to preserve the system's health. Creating a prognosis for a system can be difficult due to (a) unknown physical relationships and/or (b) irregularities in data appearing well beyond the initiation of a problem. Traditionally, three different modeling paradigms have been used to develop a prognostics model: physics-based (PbM), data-driven (DDM), and hybrid modeling. Recently, the hybrid modeling approach that combines the strength of both PbM and DDM based approaches and alleviates their limitations is gaining traction in the prognostics domain. In this paper, a novel hybrid modeling approach for prognostics applications based on combining concepts from fuzzy logic and generative adversarial networks (GANs) is outlined. The FuzzyGAN based method embeds a physics-based model in the aggregation of the fuzzy implications. This technique constrains the output of the learning method to a realistic solution. Results on a bearing problem showcases the efficacy of adding a physics-based aggregation in a fuzzy logic model to improve GAN's ability to model health and give a more accurate system prognosis.

Citations (8)

Summary

We haven't generated a summary for this paper yet.