Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The range of the Douglas-Rachford operator in infinite-dimensional Hilbert spaces (2206.07204v1)

Published 14 Jun 2022 in math.OC and math.FA

Abstract: The Douglas-Rachford algorithm is one of the most prominent splitting algorithms for solving convex optimization problems. Recently, the method has been successful in finding a generalized solution (provided that one exists) for optimization problems in the inconsistent case, i.e., when a solution does not exist. The convergence analysis of the inconsistent case hinges on the study of the range of the displacement operator associated with the Douglas-Rachford splitting operator and the corresponding minimal displacement vector. In this paper, we provide a formula for the range of the Douglas-Rachford splitting operator in (possibly) infinite-dimensional Hilbert space under mild assumptions on the underlying operators. Our new results complement known results in finite-dimensional Hilbert spaces. Several examples illustrate and tighten our conclusions.

Summary

We haven't generated a summary for this paper yet.