Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Maximum Linear Arrangement Problem for trees under projectivity and planarity (2206.06924v5)

Published 14 Jun 2022 in cs.DS, cs.CL, and cs.DM

Abstract: A linear arrangement is a mapping $\pi$ from the $n$ vertices of a graph $G$ to $n$ distinct consecutive integers. Linear arrangements can be represented by drawing the vertices along a horizontal line and drawing the edges as semicircles above said line. In this setting, the length of an edge is defined as the absolute value of the difference between the positions of its two vertices in the arrangement, and the cost of an arrangement as the sum of all edge lengths. Here we study two variants of the Maximum Linear Arrangement problem (MaxLA), which consists of finding an arrangement that maximizes the cost. In the planar variant for free trees, vertices have to be arranged in such a way that there are no edge crossings. In the projective variant for rooted trees, arrangements have to be planar and the root of the tree cannot be covered by any edge. In this paper we present algorithms that are linear in time and space to solve planar and projective MaxLA for trees. We also prove several properties of maximum projective and planar arrangements, and show that caterpillar trees maximize planar MaxLA over all trees of a fixed size thereby generalizing a previous extremal result on trees.

Summary

We haven't generated a summary for this paper yet.