Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Riemannian stochastic approximation algorithms (2206.06795v3)

Published 14 Jun 2022 in math.OC, cs.LG, and math.DS

Abstract: We examine a wide class of stochastic approximation algorithms for solving (stochastic) nonlinear problems on Riemannian manifolds. Such algorithms arise naturally in the study of Riemannian optimization, game theory and optimal transport, but their behavior is much less understood compared to the Euclidean case because of the lack of a global linear structure on the manifold. We overcome this difficulty by introducing a suitable Fermi coordinate frame which allows us to map the asymptotic behavior of the Riemannian Robbins-Monro (RRM) algorithms under study to that of an associated deterministic dynamical system. In so doing, we provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes, despite the significant complications that arise due to the curvature and topology of the underlying manifold. We showcase the flexibility of the proposed framework by applying it to a range of retraction-based variants of the popular optimistic / extra-gradient methods for solving minimization problems and games, and we provide a unified treatment for their convergence.

Citations (2)

Summary

We haven't generated a summary for this paper yet.