C*-algebraic Schoenberg Conjecture (2206.06653v1)
Abstract: Based on Schoenberg conjecture \textit{[Amer. Math. Monthly., 1986]}/Malamud-Pereira theorem \textit{[J. Math. Anal. Appl, 2003]}, \textit{[Trans. Amer. Math. Soc., 2005]} we formulate the following conjecture which we call C*-algebraic Schoenberg Conjecture.\ \textbf{ C*-algebraic Schoenberg Conjecture : Let $\mathcal{A}$ be a C*-algebra. Let $d\in \mathbb{N}\setminus{1}$, $P(z)= (z-a_1)(z-a_2)\cdots (z-a_d)$ be a polynomial over $\mathcal{A}$ with $a_1, a_2, \dots, a_d \in \mathcal{A} $. If $P'$ can be written as $P'(z)= d(z-b_1)(z-b_2)\cdots (z-b_{d-1})$ on $\mathcal{A}$ with $b_1, b_2, \dots, b_{d-1} \in \mathcal{A} $, then \begin{align*} \sum_{k=1}{d-1}b_kb_k*\leq \frac{1}{d2}\left[\sum_{j=1}{d}a_j\right]\left[\sum_{j=1}{d}a_j\right]*+ \frac{d-2}{d}\sum_{j=1}{d}a_ja_j* \end{align*} and \begin{align*} \sum_{k=1}{d-1}b_k*b_k\leq \frac{1}{d2}\left[\sum_{j=1}{d}a_j\right]*\left[\sum_{j=1}{d}a_j\right]+ \frac{d-2}{d}\sum_{j=1}{d}a_j*a_j. \end{align*}} We show that C*-algebraic Schoenberg conjecture holds for degree 2 C*-algebraic polynomials over C*-algebras.