Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving the capacitated vehicle routing problem with timing windows using rollouts and MAX-SAT (2206.06618v1)

Published 14 Jun 2022 in cs.AI

Abstract: The vehicle routing problem is a well known class of NP-hard combinatorial optimisation problems in literature. Traditional solution methods involve either carefully designed heuristics, or time-consuming metaheuristics. Recent work in reinforcement learning has been a promising alternative approach, but has found it difficult to compete with traditional methods in terms of solution quality. This paper proposes a hybrid approach that combines reinforcement learning, policy rollouts, and a satisfiability solver to enable a tunable tradeoff between computation times and solution quality. Results on a popular public data set show that the algorithm is able to produce solutions closer to optimal levels than existing learning based approaches, and with shorter computation times than meta-heuristics. The approach requires minimal design effort and is able to solve unseen problems of arbitrary scale without additional training. Furthermore, the methodology is generalisable to other combinatorial optimisation problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Harshad Khadilkar (29 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.