Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overparametrized linear dimensionality reductions: From projection pursuit to two-layer neural networks (2206.06526v1)

Published 14 Jun 2022 in stat.ML and cs.LG

Abstract: Given a cloud of $n$ data points in $\mathbb{R}d$, consider all projections onto $m$-dimensional subspaces of $\mathbb{R}d$ and, for each such projection, the empirical distribution of the projected points. What does this collection of probability distributions look like when $n,d$ grow large? We consider this question under the null model in which the points are i.i.d. standard Gaussian vectors, focusing on the asymptotic regime in which $n,d\to\infty$, with $n/d\to\alpha\in (0,\infty)$, while $m$ is fixed. Denoting by $\mathscr{F}{m, \alpha}$ the set of probability distributions in $\mathbb{R}m$ that arise as low-dimensional projections in this limit, we establish new inner and outer bounds on $\mathscr{F}{m, \alpha}$. In particular, we characterize the Wasserstein radius of $\mathscr{F}_{m,\alpha}$ up to logarithmic factors, and determine it exactly for $m=1$. We also prove sharp bounds in terms of Kullback-Leibler divergence and R\'{e}nyi information dimension. The previous question has application to unsupervised learning methods, such as projection pursuit and independent component analysis. We introduce a version of the same problem that is relevant for supervised learning, and prove a sharp Wasserstein radius bound. As an application, we establish an upper bound on the interpolation threshold of two-layers neural networks with $m$ hidden neurons.

Citations (2)

Summary

We haven't generated a summary for this paper yet.