Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Neural Networks Intersect Probabilistic Graphical Models: A Survey (2206.06089v3)

Published 24 May 2022 in cs.AI and cs.LG

Abstract: Graphs are a powerful data structure to represent relational data and are widely used to describe complex real-world data structures. Probabilistic Graphical Models (PGMs) have been well-developed in the past years to mathematically model real-world scenarios in compact graphical representations of distributions of variables. Graph Neural Networks (GNNs) are new inference methods developed in recent years and are attracting growing attention due to their effectiveness and flexibility in solving inference and learning problems over graph-structured data. These two powerful approaches have different advantages in capturing relations from observations and how they conduct message passing, and they can benefit each other in various tasks. In this survey, we broadly study the intersection of GNNs and PGMs. Specifically, we first discuss how GNNs can benefit from learning structured representations in PGMs, generate explainable predictions by PGMs, and how PGMs can infer object relationships. Then we discuss how GNNs are implemented in PGMs for more efficient inference and structure learning. In the end, we summarize the benchmark datasets used in recent studies and discuss promising future directions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chenqing Hua (18 papers)
  2. Sitao Luan (25 papers)
  3. Qian Zhang (308 papers)
  4. Jie Fu (229 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.